
Mobile User To Cloud Application
Connectivity

Overview

This quickstart guide will provide all the steps to create a secure service

between a remote user and an application hosted in Azure Cloud using

NetFoundry Overlay Fabric (NFOF).

Through NF Web Console UI

Create and install NF Client

This section will guide a user through the steps on how to create a client in the

NF Console UI. Then, it will provide links to Guides on how to install the

NetFoundry Client Software for Windows and MAC Clients, including the

registration with the NF Network Fabric.

Important

Assumption is that the NF Fabric is already up and the NF Client is installed.

E8
0E

../../netfoundry/fabric/
../../netfoundry/client/

Create and Deploy NF Azure Gateway

This section will guide a user through the steps on how to create a NF Manage

Gateway in the NF Console UI and install it in the Azure vNet.

Console UI

Navigate to Manage Clients Page

Click on + sign in the top right corner.

Fill in the required information and click on "Create"

Copy the Client Registration Key

Install the NF Client Software by following the directions at the appropriate OS link

Window

Mac

E2
42

1.

2.

3.

4.

5.

a.

b.

https://support.netfoundry.io/hc/en-us/articles/360017535332-Install-a-NetFoundry-Client-on-Windows
https://support.netfoundry.io/hc/en-us/articles/360016128692-Install-a-NetFoundry-Client-on-MacOS

Console UI

Navigate to Manage Gateways Page

Click on + sign in the top right corner.

Click on "Create Gateway" on the Azure Cloud Gateway Card

Fill in the required information and click on "Create"

Copy the Client Registration Key

Click on "Deploy to Microsoft Azure". It will take you to the Azure Portal and ask you for

your login credentials.

E2
42

1.

2.

3.

4.

5.

6.

You will be presented with the template that needs to be filled. The first section is the

Basics regarding your Subscription and Resource Group this gateway will be deployed in.

The second section related to resources associated with this gateway. e.g. vm name, ip

address space, security groups, etc. you will paste the registration key copied in step 5.

You will also need the public ssh key to use for access to this gateway remotely.

7.

8.

Create IP Host Service

This section will guide a user through the steps on how to create a NF Service.

You will need to agree to Azure Marketplace Terms and Conditions and click to

"Purchase" to continue.

If the NF Gateway was deployed successfully. Here is the view of the Resource Group and

NF Conole UI.

Done

9.

10.

11.

Console UI

Navigate to Manage Services Page under Manage Appwans

Click on + sign in the top right corner.

Click on "Create an IP Host Service"

Fill in the required information for SSH and click on "Create"

E2
42

1.

2.

3.

4.

Create AppWan

This section will guide a user through the steps on how to enable service

connectivity to users by creating an appwan.

If successfully, the service is green.

Done

5.

6.

Console UI

Navigate to Manage AppWANS Page under Manage Appwans

Click on + sign in the top right corner.

Click on "Component Builder Appwan"

Move the desired client (e.g. DemoClient01) from "Available" Clients to "Selected"

Endpoints. Move the desired service (e.g. DemoServiceSsh) from "Available" to "Selected"

E2
42

1.

2.

3.

4.

Services.

Test Connectivity to Application Server

Click on "Create".

Done

5.

6.

To test connectivity, log in to the DemoClinet01 and run ssh username@privateIpE2
42

Programmatically

via Python and Terraform

Python Modules

For the code clarity, we have broken down the code into multiple Python modules

NF REST CRUD (Create,Read, Update and Delete) operations

Get MOP Session Token

Create NF Network

Create NF Gateway(s)

Create NF Service(s)

Create NF AppWan(s)

Wrapper Script to Create NF Resources based on Resource yaml file

E3
C9

1.

2.

3.

4.

5.

6.

7.

Environment Setup Requirements

~/.env to store NF Credentials in (e.g. clientId, clientSecret) to obtain a session token for

NF API

Export Azure Credentials (e.g, export ARM_TENANT_ID, ARM_CLIENT_ID, ARM_CLIENT_SECRET,

ARM_SUBSCRIPTION_ID) to enable resource gateway creation in Azure Resource Group via

Terraform.

Terraform and Python3 installed in path.

Additional Information:

The new Resource Group in Azure is created based on then name provided in Resource

yml, if one does not exist already in the same region (e.g. centralus). The action delete

gateway will delete the RG as well even if it was an existing RG. If one does not want to

delete the RG, the command terraform state rm "{tf resource name for RG}" needs to be run

before running the gateway delete step. This will ensure that the RG is not deleted.

A new vNet will be created and NF Gateway will be placed in it.

Environment means the NF Console Environment used (e.g. production), not Azure.

E3
C9

1.

2.

3.

1.

2.

3.

../../api/python/source/netfoundry/nf_requests.py
../../api/python/source/netfoundry/nf_token.py
../../api/python/source/netfoundry/nf_network.py
../../api/python/source/netfoundry/nf_gateway.py
../../api/python/source/netfoundry/nf_service.py
../../api/python/source/netfoundry/nf_appwan.py
../../api/python/source/netfoundry/nf_resources.py
../../api/python/etc/env
../../api/python/etc/nf_resources.yml
../../api/python/etc/nf_resources.yml

Steps

Clone this repo (git clone https://github.com/netfoundry/mop.git)

Update Resource yaml file with the desired options to feed into the wrapper script as

described in the following code snippet. All Resource.yml Options

Run this from the root folder to create GW in NF Console UI and Azure.

Required Configuration Parameters for Gateway Creation

After the script is run successfully, one can see that the gateway name and registration

key were saved in Resource.yml file. The name is created automatically based on region

and gateway type joined with x and gateway count (AZCPEGW means an azure type

gateway in NF console). One can create more than one gateway in the same region by

increasing the count to more than 1.

E2
42

1.

2.

3.

python3 quickstarts/docs/api/python/source/netfoundry/nf_resources.py --file quickstarts/docs/api/

python/etc/nf_resources.yml

environment: production

network_action: get

network_name: DemoNet01

gateway_list:

- action: create

 cloud: azure

 count: 1

 names: []

 region: westus

 regionalCidr: [10.20.10.0/24]

 regkeys: []

 resourceGroup:

 name: demoPythonTerraform01

 region: centralus

 tag: TerraformDemo

terraform:

 bin: terraform

 output: 'no'

 source: ./quickstarts/docs/terraform

 work_dir: .

4.

environment: production

gateway_list:

- action: create

 cloud: azure

 count: 1

 names:

 - AZCPEGWx0xWESTUS

 region: westus

 regionalCidr:

- 10.20.10.0/24

 regkeys:

 - 21DB86724EC3F31C11C1C9D68CE5ECD6A06F057E

 resourceGroup:

 name: demoPythonTerraform01

../../api/python/etc/nf_resources.yml
../

Create a test server vm on the same vNet if not already present.

Update the Resoure.yaml file to include the Service option to create the NF service on the

gateway create in the previous step. Don't forget to change the action on the gateway to

"get".

 region: centralus

 tag: TerraformDemo

network_action: get

network_name: DemoNet01

terraform:

 bin: terraform

 output: 'no'

 source: ./quickstarts/docs/terraform

 work_dir: .

5.

6.

environment: production

gateway_list:

- action: get

 cloud: azure

 count: 1

 names:

 - AZCPEGWx0xWESTUS

 region: westus

 regionalCidr:

 - 10.20.10.0/24

 regkeys:

 - 21DB86724EC3F31C11C1C9D68CE5ECD6A06F057E

 resourceGroup:

 name: demoPythonTerraform01

After the script run again successfully, the service section should have been populated

with the service name as so.

Create a client endpoint if not already done so.

Update the Resoure.yaml file to include the AppWan option to create the NF AppWan

tying the gateway, client and service created in the previous steps. Don't forget to change

the action on the service option to "get".

 region: centralus

 tag: TerraformDemo

network_action: get

network_name: DemoNet01

terraform:

 bin: terraform

 output: 'no'

 source: ./quickstarts/docs/terraform

 work_dir: .

services:

- action: create

 gateway: AZCPEGWx0xWESTUS

 ip: 10.20.10.5

 port: 22

 name:

 type: host

7.

services:

- action: create

 gateway: AZCPEGWx0xWESTUS

 ip: 10.20.10.5

 name: AZCPEGWx0xWESTUS--10.20.10.5--22

 port: 22

 type: host

8.

9.

environment: production

gateway_list:

- action: get

 cloud: azure

 count: 1

 names:

 - AZCPEGWx0xWESTUS

 region: westus

 regionalCidr:

 - 10.20.10.0/24

 regkeys:

 - 21DB86724EC3F31C11C1C9D68CE5ECD6A06F057E

 resourceGroup:

 name: demoPythonTerraform01

 region: centralus

 tag: TerraformDemo

network_action: get

network_name: DemoNet01

services:

- action: get

 gateway: AZCPEGWx0xWESTUS

 ip: 10.20.10.5

 name: AZCPEGWx0xWESTUS--10.20.10.5--22

 port: 22

 type: host

terraform:

 bin: terraform

 output: 'no'

 source: ./quickstarts/docs/terraform

 work_dir: .

appwans:

- action: create

 endpoints:

 - BranchGatewayName

 - ClientName

 name: appwan-ssh-22

 services:

 - AZCPEGWx0xWESTUS--10.20.10.5--22

After the script ran again successfully, the connectivity should have been up. 10.

To test connectivity, log in to the DemoClinet01 and run ssh "username"@"privateIp"

To delete resources created, just follow the reverse order. Change the action to delete

for AppWans first, then other resources as indicated in the code snippets.

Services

Endpoints - will delete all resources in Azure as well.

terraform state rm "{tf resource name for RG}" // run this before the python script if Resource

Group needs to be preserved 1.

11.

12.

appwans:

- action: delete

 endpoints:

 - BranchGatewayName

 - ClientName

 name: null

 services:

 - AZCPEGWx0xWESTUS--10.20.10.5--22

13.

services:

- action: delete

 gateway: AZCPEGWx0xWESTUS

 ip: 10.20.10.5

 name: null

 port: 22

 type: host

14.

a.

via Jenkins

In this section, we will use Resource yaml along with Jenkinsfile to show how to

automate the steps further by creating the Jenkins Job

Network

Done

gateway_list:

- action: delete

 cloud: azure

 count: 1

 names: []

 region: westus

 regionalCidr:

 - 10.20.10.0/24

 regkeys: []

 resourceGroup:

 name: demoPythonTerraform01

 region: centralus

 tag: TerraformDemo

15.

environment: production

network_action: delete

network_name: DemoNet01

16.

../../api/python/etc/nf_resources.yml

Jenkins Requirements

java

docker

Then follow jenkins installation using docker to install Jenkins on the localhost and choose

"Install suggested plugins". After successful installation, one should be able to reach the

Jenkins Dashboard (8080 is default port).

E8
8E

1.

2.

https://jenkins.io/doc/administration/requirements/java/
https://docs.docker.com/get-docker/
https://jenkins.io/doc/book/installing/#installing-docker
http://localhost:8080

Note

If one wants to add the gateway deployed in the Private DataCenter and/or NF Client, it must

be created prior to running the next steps. Otherwise the options of

APPWAN_PRIVATE_GATEWAY and APPWAN_PRIVATE_CLIENT can be left blank and added

after the appwan is created using the steps described in the Console UI section above.

GATEWAY_NAME and SERVICE_NAME are automatically generated by the scripts in this

version. GATEWAY_NAME = "GW TYPE"+x0x+"LOCATION OF AZURE GW", e.g.

AZCPEGWx0xWESTUS; SERVICE_NAME = "GW NAME"--"SERVICE IP"--"SERVICE PORT", e.g.

AZCPEGWx0xWESTUS--10.20.10.5--22.

E3
C9

Setting Up Jenkins Pipeline

Login to Jenkins

Click on " New Item"

Name you Project, select pipeline option and click "Ok"

In the pipeline details, fill in the scm details as seen in the image below and click "Save".

Everything default apart from:

Repository Url: https://github.com/netfoundry/mop.git

E2
42

1.

2.

3.

4.

a.

Script Path: pipeline/netfoundrydeploy2cloud.jenkinsfile

Set up users for Azure API and NF MOP API access -- More on Credentials setup

b.

5.

https://jenkins.io/doc/book/using/using-credentials/

Run Jenkinsjob by selecting on the pipeline created in the previous step. Click on "Build

with Parameters"

6.

To create the resources

Fill in the Azure Details (e.g. RG, Tenant Id, etc) and select the following:

NF Environment, e.g. production

NETWORK_ACTION - create

NETWORK_NAME, e.g. DEMONET

GATEWAY_ACTION - create

If Azure RG needs to be preserved, then KEEP_RG option must be left checked.

LOCATION, e.g. westus - location where the Azure GW will be deployed in

SUBNET_PREFIX, e.g. 10.20.10.0/24 - the subnet used for the vNet in the location of

the Azure GW deployment.

Run Jenkins job again by selecting on the pipeline created in the previous step. Click on

"Build with Parameters"

E2
42

1.

a.

b.

c.

d.

e.

f.

g.

2.

Fill in service and appwan details by selecting the following:

KEEP_RG - not selected

NF Environment, e.g. production

SERVICE_ACTION - create

APPWAN_ACTION - create

GATEWAY_NAME, e.g. AZCPEGWx0xWESTUS (this is created in the previous step

automatically)

SERVICE_NAME, e.g. AZCPEGWx0xWESTUS--10.20.10.5--22 (this is created

automatically during this step)

SERVICE_IP, e.g. 10.20.10.5

SERVICE_PORT, e.g. 22

APPWAN_NAME, e.g. appwan-ssh-22

APPWAN_PRIVATE_GATEWAY, e.g. private-gateway-name (this is created outside of

the jenkins job, prior to running this step)

APPWAN_PRIVATE_CLIENT, e.g. client-name (this is created outside of the jenkins job,

prior to running this step)

3.

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

APPWAN_SERVICE, e.g. AZCPEGWx0xWESTUS--10.20.10.5--22 l.

To delete the resources

Run Jenkins job again by selecting on the pipeline created in the previous step. Click on

"Build with Parameters"

Fill in the Azure Details (e.g. RG, Tenant Id, etc) and select the following:

NF Environment, e.g. production

NETWORK_ACTION - delete

NETWORK_NAME, e.g. DEMONET

GATEWAY_ACTION - delete

Pipeline View

Done

E2
42

1.

2.

a.

b.

c.

d.

3.

	Mobile User To Cloud Application Connectivity
	Overview
	Through NF Web Console UI
	Create and install NF Client
	Create and Deploy NF Azure Gateway
	Create IP Host Service
	Create AppWan
	Test Connectivity to Application Server

	Programmatically
	via Python and Terraform
	via Jenkins

